Erbium-doped AlN epilayers synthesized by metal-organic chemical vapor deposition

نویسندگان

  • Talal Mohammed Al Tahtamouni
  • Xiaozhang Du
  • Jingyu Lin
  • Hongxing Jiang
چکیده

Erbium doped AlN epilayers (AlN:Er) have been grown by metal organic chemical vapor deposition. The 1.54 μm emission properties were probed by photoluminescence (PL) emission spectroscopy and compared with those of GaN:Er. Optimum intensity of the 1.54 μm emission from AlN:Er was obtained for growth temperature at 1050 °C. It was found that the emission intensity from AlN:Er is higher than that from GaN:Er for above and below energy gap, as well as resonant excitation. A significant narrowing of the infrared Er PL lines was observed when pumping resonantly into an intra-4f transition. The integrated intensity of the 1.54 μm emission shows a decrease by a factor of only 1.2 between 10 K and 300 K. ©2014 Optical Society of America OCIS codes: (160.5690) Rare-earth-doped materials; (250.5230) Photoluminescence. References and links 1. J. M. Zavada, S. X. Jin, N. Nepal, H. X. Jiang, J. Y. Lin, P. Chow, and B. Hertog, “Electroluminescent properties of erbium-doped III–N light-emitting diodes,” Appl. Phys. Lett. 84(7), 1061 (2004). 2. M. R. Brown, A. F. J. Cox, W. A. Shand, and J. M. Williams, “The spectroscopy of rare earth doped chalcogenides,” Advances in Quantum Electronics 2, 69–155 (1974). 3. A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, and D. S. Lee, “Rare earth doped gallium nitride — light emission from ultraviolet to infrared,” Compound Semiconductor 6(1), 48 (2000). 4. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983). 5. M. Thaik, U. Hommerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, “Photoluminescence spectroscopy of erbium implanted gallium nitride,” Appl. Phys. Lett. 71(18), 2641 (1997). 6. J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, “Electroluminescence from erbium and oxygen coimplanted GaN,” Appl. Phys. Lett. 69(14), 2098 (1996). 7. P. N. Favennec, H. L’Halidon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989). 8. J. M. Zavada and D. Zhang, “Luminescence properties of erbium in III–V compound semiconductors,” SolidState Electron. 38(7), 1285–1293 (1995). 9. R. Birkhahn, M. Garter, and A. J. Steckl, “Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates,” Appl. Phys. Lett. 74(15), 2161 (1999). 10. A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+‐related luminescence in In1−xGaxP,” Appl. Phys. Lett. 60(21), 2657 (1992). 11. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89(15), 151903 (2006). 12. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Excitation dynamics of the 1.54 μm emission in Er doped GaN synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(5), 051110 (2007). 13. S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, U. Hömmerich, X. Wu, R. G. Wilson, R. N. Schwartz, J. M. Zavada, and F. Ren, “Luminescence enhancement in AlN(Er) by hydrogenation,” Appl. Phys. Lett. 71(13), 1807 (1997). 14. B. N. Pantha, N. Nepal, T. M. Al Tahtamouni, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Correlation between biaxial stress and free exciton transition in AlN epilayers,” Appl. Phys. Lett. 91(12), 121117 (2007). 15. R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54‐μm photoluminescence from Er‐implanted GaN and AlN,” Appl. Phys. Lett. 65(8), 992 (1994). 16. X. Wu, U. Hommerich, J. D. Mackenzie, C. R. Abernathy, S. J. Pearton, R. G. Wilson, R. N. Schawartz, and J. M. Zavada, “Photoluminescence study of Er-doped AlN,” J. Lumin. 72, 284–286 (1997). #232084 $15.00 USD Received 6 Jan 2015; revised 22 Feb 2015; accepted 22 Feb 2015; published 25 Feb 2015 (C) 2015 OSA 1 Mar 2015 | Vol. 5, No. 3 | DOI:10.1364/OME.5.000648 | OPTICAL MATERIALS EXPRESS 648 17. F. S. Liu, Q. L. Liu, J. K. Liang, J. Luo, H. R. Zhang, Y. Zhang, B. J. Sun, and G. H. Rao, “Visible and infrared emissions from c-axis oriented AlN:Er films grown by magnetron sputtering,” J. Appl. Phys. 99(5), 053515 (2006). 18. Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441(7091), 325–328 (2006). 19. T. M. Al tahtamouni, J. Y. Lin, and H. X. Jiang, “High quality AlN grown on double layer AlN buffers on SiC substrate for deep ultraviolet photodetectors,” Appl. Phys. Lett. 101(19), 192106 (2012). 20. T. M. Al tahtamouni, J. Y. Lin, and H. X. Jiang, “Effects of double layer AlN buffer layers on properties of Sidoped AlxGa1−xN for improved performance of deep ultraviolet light emitting diodes,” J. Appl. Phys. 113(12), 123501 (2013). 21. C. Ugolini, I. W. Feng, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Formation energy of optically active Er centers in Er doped GaN,” Appl. Phys. Lett. 101(5), 051114 (2012). 22. R. Hui, R. Xie, I. W. Feng, Z. Y. Sun, J. Y. Lin, and H. X. Jiang, “Excitation cross section of erbium-doped GaN waveguides under 980 nm optical pumping,” Appl. Phys. Lett. 105(5), 051106 (2014). 23. H. Rinnert, S. S. Hussain, V. Brien, J. Legrand, and P. Pigeat, “Photoluminescence properties of Er-doped AlN films prepared by magnetron sputtering,” J. Lumin. 132(9), 2367–2370 (2012). 24. A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Optoelectronic and structural characteristics of Er-doped amorphous AlN films,” J. Appl. Phys. 98(9), 093514 (2005). 25. U. Hommerich, J. T. Seo, C. R. Abernathy, A. J. Steckl, and J. M. Zavada, “Spectroscopic studies of the visible and infrared luminescence from Er doped GaN,” Mater. Sci. Eng. B 81(1-3), 116–120 (2001).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoluminescence properties of erbium doped InGaN epilayers

We report on the photoluminescence properties of erbium Er doped InxGa1−xNa epilayers synthesized by metal organic chemical vapor deposition. The crystalline quality and surface morphology of Er doped In0.05Ga0.95N were nearly identical to those of Er doped GaN. The photoluminescence intensity of the 1.54 m emission in Er doped In0.05Ga0.95N was an order of magnitude lower than in Er doped GaN ...

متن کامل

Correlation between the optical loss and crystalline quality in erbium-doped GaN optical waveguides.

Erbium-doped GaN (GaN:Er) epilayers were synthesized by metal organic chemical vapor deposition. GaN:Er waveguides were fabricated based on four different GaN:Er layer structures: GaN:Er/GaN/Al2O3, GaN:Er/GaN/AlN/Al2O3, GaN:Er/GaN/Al(0.75)Ga(0.25)N/AlN/Al2O3, and GaN/GaN:Er/GaN/Al2O3. Optical loss at 1.54 μm in these waveguide structures has been measured. It was found that the optical attenuat...

متن کامل

Refractive index of erbium doped GaN thin films

GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those ob...

متن کامل

Current-injected 1.54 m light emitting diodes based on erbium-doped GaN

Current-injected 1.54 m emitters have been fabricated by heterogeneously integrating metal organic chemical vapor deposition grown Er-doped GaN epilayers and 365 nm nitride light emitting diodes. It was found that the 1.54 m emission intensity increases almost linearly with input forward current. The results represent a step toward demonstrating the feasibility for achieving electrically pumped...

متن کامل

High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition

Influence of sapphire pretreatment conditions on crystalline quality of AlN epilayers has been investigated by metal organic chemical vapor deposition (MOCVD). Compared to alumination treatment, it is found that appropriate sapphire nitridation significantly straightens the surface atomic terraces and decreases the X-ray diffraction (0002) full width at half maximum (FWHM) to a minimum of 55 ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015